国立大学入試対策問題 三角関数

1	半径1の円に内接する正五角形 $ABCDE$ の1辺の長さを a とし、 $\alpha = \frac{2}{5}\pi$ とおく。
	(1) $\sin 3\alpha + \sin 2\alpha = 0$ が成り立つことを証明せよ。 (2) $\cos \alpha$ の値を求めよ。 (3) α の値を求めよ。
	(4) 線分 AC の長さを求めよ。
2	正三角形 ABC が半径 1 の円に内接しているものとする。 P は点 A , B と異なる点で、 A , B を両端とし点 C を含まない弧の上を動くものとする。 (1) $\angle PBA = \theta$ とおくとき、 PA , PB , PC をそれぞれ θ を用いて表せ。また、
	PA+PB+PC の最大値を求めよ。 (2) $PA^2+PB^2+PC^2$ を求めよ。
3	半径 OA $=$ OB $=$ 1 、中心角 $\angle AOB$ $=$ $2 heta\left(0$ $<$ $\frac{\pi}{2} ight)$ の扇形 OAB に内接し、
	その 2 辺が弦 AB と平行であるような長方形 $PQRS$ について考える。頂点 P と Q は弧 AB 上に、残りの 2 頂点はそれぞれ辺 OA と OB 上にあるとして、 $\angle POQ = 2\alpha$ とする。 (1) 長方形 $PQRS$ の面積を、 α と θ の三角比を用いて表せ。 (2) 長方形 $PQRS$ の面積が最大になるときの α を θ で表せ。
	(3) $\theta = \frac{\pi}{3}$ のとき、長方形 $PQRS$ の面積の最大値を求めよ。
4	(1) $0 \le x < \frac{\pi}{2}$ とする。 方程式 $1 + \cos x - \sin x - \tan x = 0$ を満たす x のは値は のり、不等式 $ \cos x - \sin x \le \frac{\sqrt{2}}{2}$ を満たす x の範囲は である。
	(2) (7) $\sin \theta = \frac{1}{5}$ であるとき、 $\sin 3\theta$ の値を求めよ。
	(4) $0 \le x \le \pi$ とする。このとき、 $-2\sin 3x - \cos 2x + 3\sin x + 1 \le 0$ を満たすような x の値の範囲を求めよ。
5	$\triangle ABC$ の 3 辺の長さがそれぞれ $AB=5$, $BC=7$, $AC=4\sqrt{2}$ であるとする。この三角形の $\angle ABC$ の大きさを B で表すと $\cos B=$ であり、 $\triangle ABC$ の外接円の半径 R は、 $R=$ である。ま
	た、 $\angle ABC$ の二等分線と $\triangle ABC$ の外接円の交点で B と異なる点を D とする。このとき、 AD = であり、さらに $\triangle ABC$ の外接円の中心を O とすると、 $\triangle AOD$ の面積は となる。
	- $ -$

- 「① $\triangle ABC$ の3つの角 $\angle A$, $\angle B$, $\angle C$ のそれぞれの大きさをA, B, C とする。
 (1) $\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$ を余弦の加法定理から導け。
 (2) (1)の結果を用いて $\cos A + \cos B \le 2\sin\frac{C}{2}$ を示せ。また、等号が成り立つのはどのようなときか。
 (3) (2)の結果を用いて $\cos A + \cos B + \cos C$ が最大になるとき、A, B, C を求めよ。

 [7] 三角形ABC は $AC = \sqrt{5}$, $BC = 2\sqrt{5}$, $\angle C = 90^\circ$ の直角三角形である。辺BC 上の点D を $CD = \frac{\sqrt{5}}{2}$ となるようにとり、B から直線AD に下ろした垂線をBH とする。このとき、 $\angle BAH = \alpha$ とすると、 $\cos \alpha =$ であり、AH = となる。
- 图 θ が $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ の範囲を動くとき、座標平面上の直線 $y = (\sin \theta)x + \cos \theta$ 上の点 (x, y) について、不等式 $-|x| \le y \le \sqrt{x^2 + 1}$ が成り立つことを示せ。

a を実数の定数とする。x についての方程式 $4\sin^2 x - a\sin x + 1 = 0$ $(0 \le x \le \pi)$ は4つ